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Improvement of the renormalization method for the transition to stochastic instability in a
Hamiltonian system and application to a harmonically forced double well potential
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An improvement of the renormalization method for the HamiltonianH(v,x,t)5v2/22M cosx2P cosk(x
2t) is pursued in the present paper. The coefficients of the retained resonances in the renormalization proce-
dure are obtained using two different action values, one of which is taken from the renormalized torus and the
other from the retained resonance centers. It turns out that the results for both cases show different behaviors
at smallk and M /P. The renormalization method is applied to the double well potential with an oscillatory
force field which has not been explained by the two pendulum approximation.@S1063-651X~99!09403-9#
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I. INTRODUCTION

It is important in various fields to predict when a nonli
ear Hamiltonian system shows a transition to a large-s
instability. Many authors have studied this subject for so
specific systems by both direct numerical integration of
equation of motion and approximate theoretical meth
@1,2#.

Although many approximate criteria have been sugges
for this transition, the most popular one among these is
so-called ‘‘resonance overlap criterion’’@2#. This criterion
holds that a transition to stochastic behavior occurs when
separatixes of two adjacent resonances start to overlap. H
ever, a more accurate method was developed by Escand
Doveil using renormalization-group techniques@3,4#. This
renormalization method was developed for a nonlin
Hamiltonian

H~v,x,t !5v2/22M cosx2P cosk~x2t !, ~1!

and gave an estimate of the transition to stochastic instab
within 5–10 % in comparison with the direct integration r
sults. Escande and co-workers@5,6# pointed out that the Kol-
mogorov transformation gives more accurate estimates,
reported an estimate within 4%. Recently, Govin and
workers@7,8# developed a more exact theory which can p
dict the stability and breakup of invariant tori in Hamiltonia
flows, using a combination of Kolmogorov-Arnold-Mose
theory and renormalization-group techniques.

The renormalization criterion given by Escande and
workers was tested for several systems such as double
@9,10#, periodic@11#, and square well potential@12# systems
with a monochromatic external field, and only the squ
well potential gave a very accurate prediction while the ot
cases did not. This bad prediction may come from the dep
dency ofM andP on an action variable which does not allo
a direct application of the renormalization method. In tho
PRE 591063-651X/99/59~3!/2880~7!/$15.00
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systems, the application of the renormalization meth
should be carried out carefully.

In the present paper we manifest the improvement of
renormalization method by the Kolmogorov transformatio
and apply the improved method to the double well poten
with a monochromatic external field in a different way fro
the previous two pendulum approximation@9#. Our renor-
malization scheme basically follows that of Ref.@5#. The
calculation in this paper, however, are performed in a diff
ent way. Coefficients of the resonances are approxima
expressed in a closed form, and the two retained resona
are determined in a different way. The coefficients of t
retained resonances are obtained using two different ac
values, one of which is taken from the renormalized to
and the other from the retained resonance centers, and
results of the both cases are compared.

In Sec. II the improved renormalization method by t
Kolmogorov transformation is illustrated, and results of th
impoved method are compared with the previous renorm
ization results and direct integration results@3# in Sec. III.
The application to the double well with a monochroma
external field is discussed in Sec. IV, and we give conc
sions in the final section.

II. RENORMALIZATION TRANSFORMATION

The Hamiltonian@Eq. ~1!# can be transformed to a form
which contains smaller oscillatory terms with second ord
of M and/orP by the Kolmogorov transformation. The Kol
mogorov transformation from (v,x,t) to (I ,u,t) is carried
out using a generating function

F~ I ,x,t !5Ix1
M sinx

I
1

P sink~x2t !

k~ I 21!
~2!

which ‘‘kills’’ both resonancesM andP. Then
2880 ©1999 The American Physical Society
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v5
]F

]x
5I 1

M cosx

I
1

P cosk~x2t !

I 21
, ~3!

u5
]F

]I
5x2

M sinx

I 2
2

P sink~x2t !

k~ I 21!2
, ~4!

and the new HamiltonianH (1)(I ,u,t) is written as

H ~1!~ I ,u,t !5H0~ I !1V~ I ,u,t !, ~5!

where

H0~ I !5
1

2
I 21

M2

4I 2
1

P2

4~ I 21!2
, ~6!

V~ I ,u,t !5
M2

4I 2
cos 2x1

P2

4~ I 21!2
cos 2k~x2t !

1
M P

I ~ I 21!
cosx cosk~x2t !. ~7!

Note thatV(I ,u,t) is of second order ofM and/or P. We
assume thatk is a rational number, i.e.,k5r /p, wherer and
p are integers. The perturbative termV(I ,u,t) is, then, a
periodic function foru and t with a period 2pp, and can be
expanded into the Fourier series:

H~ I ,u,t !5H0~ I !1(
n,l

Vnl~ I !cos„~nk1 l !u2nkt…. ~8!

The Fourier coefficientVnl(I ) can be calculated approx
mately. The complex form ofV(I ,u,t) is

U~ I ,u,t !5
M2

4I 2
ei2x1

P2

4~ I 21!2
ei2k~x2t !

1
M P

2I ~ I 21!
~ei „~11k!x2kt…1ei „~12k!x1kt…!,

~9!

and its Fourier coefficients are

U jm5
1

t2E0

tE
0

t

U~ I ,u,t !e2~2p/t!~ j u1mt!dudt, ~10!
ca
ng
m

where t52pp. In order to obtain the analytic expressio
we approximate the expression ofx as

x.u1
M sinu

I 2
1

P sink~u2t !

k~ I 21!2
, ~11!

and use the identity relation

eiz sin f5J0~z!1 (
n51

`

Jn~z!„einf1~21!ne2 inf
…, ~12!

where theJ’s are Bessel functions. Substituting Eqs.~11!
and~12! into Eq.~9!, one can see thatU jm has nonvanishing
values only whenj 5nr1 lp andm5nr, wheren and l are
integers, and can obtain an expression forU jm , from which,
in turn, Vnl should be obtained. Several values ofVnl for a
typical I value are shown in Fig. 1. It is shown that th
dominant coefficients are values belonging tol 51 in the
region concerned. Therefore, hereafter we suppress the i
l by putting l 51. In Ref. @5# the Fourier coefficients are
expressed by a infinite series, and the dominant coefficie
are chosen by puttingn51 instead ofl 51.

The position of the resonance characterized byn and l
51 in the angular velocityV is found by the condition tha
the phase of the resonance be stationary. The position o
resonance is

V~n!5
nk

nk11
. ~13!

Taking an invariant torus characterized byI 0 , the above
Hamiltonian can be expanded aboutI 0 or the corresponding
angular velocityV0 . Here we assume that the invariant tor
is affected by the neareast two resonances that are atV (n0)

andV (n011) and, then,

V~n0!,V0,V~n011! . ~14!

We assumen0>1, and the casen050 ~the invariant tori
between resonancesV (0) andV (1)) will be discussed at the
end of this section. We denote the position of the invari
torus by a noninteger valuez, i.e.,

V05V~z!5V~n01dz! , 0<dz,1. ~15!

Then the effective Hamiltonian becomes
He f f
~1! ~ I ,u,t !5H0~ I 0!1V0~ I 2I 0!1 1

2 s0~ I 2I 0!21Vn0
~ I 0!cos„~n0k11!u2n0kt…

1Vn011~ I 0!cos@„~n011!k11…u2~n011!kt#, ~16!
whereV05dH0(I 0)/dI ands05d2H0(I 0)/dI2.
In order to obtain the desired Hamiltonian, a canoni

transformation is carried out. Using the following generati
function, the effective Hamiltonian is transformed fro
(u,I ,t) to (y,J,t):
l F ~1!~ I ,y,t !52
I „y1~n01l!kt…

~n01l!k11
1my1nt, ~17!

where
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m5
~n01l!k2~V02s0I 0!„~n01l!k11…

s0~~n01l!k11!2
~18!

and

n52H01V0I 02
1

2
s0I 0

2

1S s0I 02V01
~n01l!k

~n01l!k11D „~n01l!k11…m

2
1

2
s0„~n01l!k11…2m2, ~19!

wherel is introduced to make renormalization procedu
have fast convergence@3#, and

l50 for 1
2 <dz,1,

~20!
l51 for 0<dz, 1

2 .

This choice ofl guarantees thatn0>1 at successive renor
malization procedures, which will be clear in Sec. III. Fro
the above generating function, the relations between the
and new coordinates are

J52
]F ~1!

]y
5

I

~n01l!k11
2m, ~21!

u52
]F ~1!

]I
5

y1~n01l!kt

~n01l!k11
, ~22!

and the new Hamiltonian is obtained as

H ~2!5Heff
~1!1

]F ~1!

]t

5
1

2
s0„~n01l!k11…2J21Vn01l cosy

1Vn0112l cosk8~y2gt !, ~23!

where

k85
~n0112l!k11

~n01l!k11
~24!

and

g5
~122l!k

~n0112l!k11
. ~25!

At last, we have the final Hamiltonian witht85gt and
w5@s0„(n01l)k11…2/g#J,

HF~w,y,t8!5
w2

2
2M 8cosy2P8cosk8~y2t8!, ~26!

where
s

ld

M 852
s0~~n01l!k11!2

g2
Vn01l , ~27!

P852
s0~~n01l!k11!2

g2
Vn0112l . ~28!

A renormalization procedure is composed of the transform
tions illustrated in this section, i.e., it corresponds to a tra
formation from Hamiltonian parameters (k,M ,P) to
(k8,M 8,P8).

Until now we have assumed thatn0>1, which means that
the invariant torus to be renormalized exists in one part o
possible region between resonancesM and P, i.e., V (1)
,V0,1. The renormalization procedure for the other p
(V (0),V0,V (1)) can be performed with the help of
transformation from the original Hamiltonian@Eq. ~1!#, with
parameters (k,M ,P) to an identical Hamiltonian system wit
parameters (1/k,P,M ). Then the rangeV (0),V0,V (1) in
the original Hamiltonian corresponds the rangeV (1),V0
,1 in the transformed Hamiltonian with paramete
(1/k,P,M ), so we can again apply, the above renormali
tion procedure to this Hamiltonian.

III. NUMERICAL RESULT OF RENORMALIZATION
TRANSFORMATION

As mentioned in Sec. II, the invariant torus to be ren
malized can be characterized byz or n0 anddz. In order to
carry out successive renormalizaion procedures, the pos
of transformed invariant torus (z85n081dz8) should be re-
quired. This position can be easily obtained when one s
the problem in the limit thatM andP go to zero. From Eq.
~13!, the position of invariant torus can be written as

z5n01dz5
V0

k~12V0!
, ~29!

and, in the limit thatM andP go to zero,

z5
v0

k~12v0!
, ~30!

since, in that limit,v5I 5V. The position of transformed
invariant torus, therfore, is

z85n081dz85
w0

k8~12w0!
, ~31!

and, using Eq.~21! and the relation betweenw andJ in Sec.
II, one can obtain

z85
dz

12dz
for l50 ~32!

and

z85
12dz

dz
for l51. ~33!
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Note that the new position of the invariant torus depen
only ondz, not onn0 . The relation betweenz8 anddz, and
the factn08>1 ~the integer part ofz8 is n08), are shown in
Fig. 2. There is the infinite number of fixed pointsdzn

l as
shown in Fig. 3. Those fixed points are

dzn
l5052

n

2
1

n

2
A11

4

n
, ~34!

dzn
l515

2n21

2
1

1

2
An212n15, ~35!

wheren is a positive integer. This means that if one takes
invariant torus corresponding toz5n01dzn

08
l

, then the next

position of invariant torus isz85n081dzn
08

l
and this position

is unchanged under subsquent renormalization procedur
As one can see from Eq.~24!, under successive applica

tion of renormalization procedures the value ofk approaches

FIG. 1. Vnl whenM50.1, P50.1, k50.5, andI 50.2.

FIG. 2. z8 as a function ofdz.
s

n

.

two fixed points, one of which corresponds tol50 and the
other tol51 ~Fig. 4!. These fixed points are

kn
l505

1

2
1

1

2
A11

4

n
, ~36!

kn
l515

1

2
2

1

n11
1

1

2
A11

4

~n11!2
. ~37!

Once one takes an invariant torus, one can know whe
the invariant torus is broken or not from the behavior of t
transformed coefficientsM andP under successive renorma
ization. When the values of the transformedM and P ap-
proach zero, the invariant torus is stable, i.e., not broken.
the other hand, if the values become larger and larger s
cessively, the invariant torus is supposed to be broken.

In practical calculations, we use two kinds of coefficien
of the retained resonances in Eq.~23!. One is obtained by
taking the action value of the renormalized torus, and
other by taking the action value of resonance center.~Results

FIG. 3. dz8 vs dz. The cross points withdz85dz line are the
fixed points.

FIG. 4. k8 vs k when n51. The two cross points with thek8
5k line are the fixed points.
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for the latter case appear only in Figs. 6 and 7! We investi-
gate the stability about invariant toriz5n01dzn

08
l

and 1

<n0 ,n08<10. This means that 400 invariant tori, being b
tween resonancesM andP, are investigated. This number o
invariant tori is enough to see the transition to stocha
instability from the isolated resonances divided by a sta
invariant torus. We can suppose that when the invariant to
is broken, a transition to stochastic instability takes place

Results fork51, 2, and 3 are shown in Fig. 5, whereX
52AM andY52AP indicate the half width of the resonan
domains. These results are very similar to those of the
vious the renormalization method@3#.

To see the improvement of the renormalization method
the Kolmogorov transformation, in Figs. 6 and 7 we plotS

FIG. 5. The instability transition lines whenk51, 2, and 3.

FIG. 6. S vs X/Y when k51. The solid line and dashed line
represent the present results for the cases of the use of the a
value of the renormalized torus and of the resonance center, re
tively. The dotted line and the data points are results of Ref.@3#.
-

ic
le
us

e-

y

versusX/Y whenk51, andSversusk whenX/Y51, respec-
tively, whereS5X1Y. The solid and dashed lines represe
the present results for the cases of the use of the action v
of the renormalized torus and the retained resonance ce
respectively. The dotted line shows the results of the pre
ous renormalization method and the data points those of
direct numerical integration@3#.

It is clear from the figures that the Kolmogorov transfo
mation improves the renormalization method when using
action value of the renormalized torus. When using the
tion value of the resonance center, the estimates of the t
sition to stochastic instability do not improved at smallX/Y
and k. These results are different from the known fact th
the use of the action value of the resonance center is cru
in the improved renormalization scheme by the Kolmogor
transformation@5#. We find that the behavior at smallX/Y
andK is determined by invariant tori with smalln0 , where
the distance between the retained resonances is relat
long. This implies that the use of the action value of t
retained resonance center is not proper when the distan
long.

IV. APPLICATION TO THE DOUBLE WELL WITH AN
OSCILLATORY FORCE FIELD

Reichl and Zheng@9,10# studied the motion of a particle
trapped in a quartic double-well potential in the presence
a dynamic monochromatic external field. They showed t
the use of the renormalization method does not give a pro
result in this system under their pendulum approximati
We note that their pendulum approximation is somewhat
physical in choosing the coefficients of perturbations cor
sponding toM andP in Eq. ~1!. In this section, we apply the
renormalization method to this system in a subtle way.

The Hamiltonian for this system is

H5 1
4 p222x21x41ex cos~vt !, ~38!

ion
ec-

FIG. 7. S vs k when X/Y51. The solid line and dashed line
represent the present results for the cases of the use of the a
value of the renormalized torus and of the resonance center, res
tively. The dotted line and the data points are results of Ref.@3#.
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and can be rewritten in terms of action-angle variables@10#
as

H5E0~ I !1e (
n52`

`

gn~ I !cos~nu2vt !, ~39!

where

gn~ I !5
p

2K
A 2

22k2
sechS unupK8

K D ~40!

for a trapped particle (21,E0,0).K is the complete ellip-
tic integral of the first kind,k is the modulus defined as

k25
2A11E0

11A11E0

, ~41!

andK8 is the complete elliptic integral of the first kind wit
a modulusk85A12k2. The position of thenth resonance
zone in action space is

u̇.
]E0

]I U
I 5I n

5
A2p

A22k2K
U

I 5I n

5
v

n
. ~42!

In order to study the onset of chaos in the region between
nth and (n11)st zone, one can use the two resonance
proximation and expand about the resonance pointI n ,

H5E0~ I n!1
]E0~ I n!

]I
~ I 2I n!1

1

2

]2E0~ I n!

]I 2
~ I 2I n!21•••

1egn~ I !cos~nu2vt !

1egn11~ I !cos@~n11!u2vt#. ~43!

In the pendulum approximation given by Reichl and Zhe
the coefficients are taken asgn(I )5gn(I n) and gn11(I )
5gn11(I n11). However, these replacements have a we
physical basis, sincegn(I ) andgn11(I ) are the functions of
the same actionI.

Now we concentrate on the case ofn51. Using the gen-
erating function

F1~ I ,x8,t !52~ I 2I 1!~x81vt !, ~44!

a new Hamiltonian can be obtained as

H185H1
]F1

]t
5E0~ I 1!2

1

2

p82

m0~ I 1!
1eg1~ I !cosx8

1eg2~ I !cos~2x81vt !, ~45!

where

m0~ I 1!5US ]2E0~ I 1!

]I 2 D U ~46!

and

]2E0~ I !

]I 2
5

p2~22k2!

4k4K3
X2K2S 22k2

12k2D EC, ~47!
e
p-

,

k

whereE is the complete elliptic integral of the second kin
Since we have interest in the onset of chaos in the reg

betweenn51 and 2 zones, it is possible to expand t
Hamiltonian about then52 resonance; then we obtain
Hamiltonian similar to Eq.~43!. Then, if we use the gener
ating function

F2~ I ,x8,t !52 1
2 ~ I 2I 2!~x81vt !, ~48!

a new Hamiltonian is found as

H285H1
]F2

]t
5E0~ I 2!22

p82

m0~ I 2!
1eg1~ I !cos

1

2
~x82vt !

1eg2~ I !cosx8, ~49!

where

m0~ I 2!5US ]2E0~ I 2!

]I 2 D U . ~50!

If one takesx95 1
2 (x82vt) and p952p2 1

2 vm0(I 2), it is
evident that this Hamiltonian is identical toH18 except for the
value ofm0 . So it is possible that the error inserted throu
the expansion can be reduced by taking the average valu
m0̄5„m0(I 1)1m0(I 2)…/2.

Taking p052p8/v, t05vt/2, x05x8, and H0

54H8/v2, the HamiltonianH18 takes the so-called ‘‘stan
dard form’’

H05
4E0~ I 1!

v2
2

p0
2

2m0̄

1U0
x cosx01U0

y cos„2~x01t0!….

~51!

The coefficients are defined as

U0
x5

4eg1~ I !

v2
~52!

and

U0
y5

4eg2~ I !

v2
. ~53!

These are related to our coefficientsM andP by

M5
U0

x

m̄0

~54!

and

P5
U0

y

m̄0

. ~55!

In order to apply the renormalization method, it is necess
to set the values ofg1(I ) andg2(I ). Since the invariant tori
z5n01dzn

08
l

are investigated~see Sec. III!, it is natural to

takeg1(I z) andg2(I z), whereI z is the corresponding action
for the renormalized torus. This means that we use differ
values of the coefficients according to the position of inva
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ant torus. The result is shown in Fig. 8. Our careful appli
tion of the renormalization gives a more accurate estim
than the two pendulum approximation.

V. CONCLUSION

We confirm the improvement of the renormalizatio
method by the Kolmogorov transformation for the transiti

FIG. 8. The instability transition line on thee-v plane. The
solid line represents the present theory. The dashed line show
result of the two pendulum approximation. The data points sh
direct integration@9#.
ei
-
te

to stochastic instability in a Hamiltonian@Eq. ~1#. As pointed
out in Refs.@3,5#, this improvement can be expected, sin
the Kolmogorov transformation makes the perturbative ter
smaller in the second order ofM andP in the original Hamil-
tonian, so that the expansion of Hamiltonian aboutI 0 in Sec.
II gives a more accurate expression than does the expan
without the Kolmogorov transformation. However, in th
present renormalization scheme the use of the action valu
the resonance center for the coefficients gives a rather
estimate at smallk andX/Y, which is contrary to the results
of Ref. @5#. The origin of this discrepancy is not clear.
seems that the use of the action value of the retained r
nance center is not proper when the distance between
resonance centers is long. However, we suppose that the
of the action value of the resonance center does not g
good estimates when the retained resonances locate w
distance, i.e., whenn0 is small.

Using this renormalization method, we also investiga
the escape of a particle trapped in a double well system
to a dynamic monochromatic external field. In this applic
tion, varying coefficients of the pertubation according to t
invariant torus tested are used, which have a more s
physical basis than the previous two pendulum approxim
tion of Reichl and Zheng.

ACKNOWLEDGMENT

One of the authors~E.S.Y.! acknowledges the partial sup
port by the research fund of Semyung University.

the
w

@1# J. M. Greene, J. Math. Phys.20, 1183~1979!.
@2# B. V. Chirikov, Phys. Rep.52, 263 ~1979!.
@3# D. E. Escande and F. Doveil, J. Stat. Phys.26, 257 ~1981!.
@4# D. E. Escande and F. Doveil, Phys. Lett.83A, 307 ~1981!.
@5# D. E. Escande, M. A. Mohamed-Benkadda, and F. Dov

Phys. Lett.101A, 309 ~1984!.
@6# D. E. Escande, Phys. Rep.121, 165 ~1985!.
@7# M. Govin, C. Chandre, and H. R. Jauslin, Phys. Rev. Lett.79,
l,

3881 ~1997!.
@8# C. Chandre, M. Govin, and H. R. Jauslin, Phys. Rev. E57,

1536 ~1998!.
@9# L. E. Reichl and W. M. Zheng, Phys. Rev. A29, 2186~1984!.

@10# L. E. Reichl and W. M. Zheng, Phys. Rev. A30, 1068~1984!.
@11# W. A. Lin and L. E. Reichl, Phys. Rev. A31, 1136~1985!.
@12# W. A. Lin and L. E. Reichl, Physica D19, 145 ~1986!.


