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Improvement of the renormalization method for the transition to stochastic instability in a
Hamiltonian system and application to a harmonically forced double well potential
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An improvement of the renormalization method for the Hamiltorigw ,x,t) =v2/2— M cosx— P cosk(x
—t) is pursued in the present paper. The coefficients of the retained resonances in the renormalization proce-
dure are obtained using two different action values, one of which is taken from the renormalized torus and the
other from the retained resonance centers. It turns out that the results for both cases show different behaviors
at smallk and M/P. The renormalization method is applied to the double well potential with an oscillatory
force field which has not been explained by the two pendulum approxima8daf63-651X%99)09403-9

PACS numbes): 05.45—-a

I. INTRODUCTION systems, the application of the renormalization method
should be carried out carefully.

It is important in various fields to predict when a nonlin-  In the present paper we manifest the improvement of the
ear Hamiltonian system shows a transition to a large-scaleenormalization method by the Kolmogorov transformation,
instability. Many authors have studied this subject for someand apply the improved method to the double well potential
specific systems by both direct numerical integration of thewith a monochromatic external field in a different way from
equation of motion and approximate theoretical methodshe previous two pendulum approximati¢@]. Our renor-
[1,2]. malization scheme basically follows that of R¢&]. The

Although many approximate criteria have been suggestedalculation in this paper, however, are performed in a differ-
for this transition, the most popular one among these is thent way. Coefficients of the resonances are approximately
so-called “resonance overlap criterio’2]. This criterion expressed in a closed form, and the two retained resonances
holds that a transition to stochastic behavior occurs when thare determined in a different way. The coefficients of the
separatixes of two adjacent resonances start to overlap. Howetained resonances are obtained using two different action
ever, a more accurate method was developed by Escande avalues, one of which is taken from the renormalized torus
Doveil using renormalization-group techniqug®4]. This  and the other from the retained resonance centers, and the
renormalization method was developed for a nonlinearesults of the both cases are compared.

Hamiltonian In Sec. Il the improved renormalization method by the
Kolmogorov transformation is illustrated, and results of this
H(v,x,t)=v2/2—M cosx— P cosk(x—t1), 1) impoved method are compared with the previous renormal-

ization results and direct integration resul® in Sec. lIl.
and gave an estimate of the transition to stochastic instabilitfhe application to the double well with a monochromatic
within 5—10 % in comparison with the direct integration re- external field is discussed in Sec. IV, and we give conclu-
sults. Escande and co-workéEs6] pointed out that the Kol-  sions in the final section.
mogorov transformation gives more accurate estimates, and
reported an estimate within 4%. Recently, Govin and co-
workers[7,8] developed a more exact theory which can pre-
dict the stability and breakup of invariant tori in Hamiltonian ~ The Hamiltonian[Eq. (1)] can be transformed to a form
flows, using a combination of Kolmogorov-Arnold-Moser which contains smaller oscillatory terms with second order
theory and renormalization-group techniques. of M and/orP by the Kolmogorov transformation. The Kol-

The renormalization criterion given by Escande and comogorov transformation fromu(x,t) to (I,6,t) is carried
workers was tested for several systems such as double wejlit using a generating function

[9,10], periodic[11], and square well potentifl 2] systems

Il. RENORMALIZATION TRANSFORMATION

with a monochromatic external field, and only the square M sinx P sink(x—t)
well potential gave a very accurate prediction while the other F(l,x,t)=Ix+ 2)
cases did not. This bad prediction may come from the depen- ! k(1-1)

dency ofM andP on an action variable which does not allow
a direct application of the renormalization method. In thosewhich “kills” both resonancesM andP. Then
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JF M cosx P cosk(x—t) where 7=27p. In order to obtain the analytic expression,
v St (3 we approximate the expression fs
_dF M sinx P sink(x—t) X=0+ M sm6+ Psmk(e—t), (11)

o 2 —1)2 | k(1—1)
I . . and use the identity relation
and the new Hamiltoniabl ()(1, 6,t) is written as y

©

HO(1,0,0)=Ho(1)+V(I,6,1), ©) eiZSi”¢=Jo(z)+nZl (2 €M+ (—1)"e "), (12
where
where theJ’s are Bessel functions. Substituting Edq$l)
1, M? P2 and(12) into Eq.(9), one can see that;, has nonvanishing
Ho(h =51+ =+ ——, (6)  values only wherj=nr+Ip andm=nr, wheren and| are
412 4(1-1) . . ) :
integers, and can obtain an expressionUgy, , from which,
2 p2 in turn, V,, should be obtained. Several values\gjj for a
V(I,6,t)= — cos X+ ——— cos K(x—t) typic_al | value are shown in Fig. 1. It i§ shown_that the
412 4(1—1)? dominant coefficients are values belongingltel in the
region concerned. Therefore, hereafter we suppress the index
n MP cosx cosk(x—t). @ | by putting I=1_. I_n_Ref. [_5] the Fourier cqefficients are
I(1-1) expressed by a infinite series, and the dominant coefficients
, are chosen by putting=1 instead ofl = 1.
Note thatV(l,6,t) is of second order oM and/orP. We The position of the resonance characterizednbgnd |
assume thak is a rational number, i.ek=r/p, wherer and  _1 jn the angular velocitf is found by the condition that

p are integers. The perturbative ter(l,6,t) is, then, a  the phase of the resonance be stationary. The position of the
periodic function forg andt with a period 2rp, and can be esonance is

expanded into the Fourier series:
nk

H(l ,e,t)=H0(|)+2I V(1) cos(nk+1)9—nkp). (8) Qo=nrr1

_ o ~ Taking an invariant torus characterized by, the above
The Fourier coefficienV (1) can be calculated approxi- Hamiltonian can be expanded abdytor the corresponding

(13

mately. The complex form o¥(1,6,t) is angular velocity),. Here we assume that the invariant torus
5 5 is affected by the neareast two resonances that afb(,%;
u(l,6,t)= M_ei2x+P_ei2k(x—t> andQ(nOH) and, then,
412 4(1-1)?
Mp Qg <Qo<Ln +1)- (19
+ (ei((l+k)x—kt)+ ei((l—k)x+kt)) . ] )
21(1-1) ’ We assumeny=1, and the cas@,=0 (the invariant tori
©) between resonancéy,, and(};)) will be discussed at the
end of this section. We denote the position of the invariant
and its Fourier coefficients are torus by a noninteger valug i.e.,

QOZQ(Z):Q(nO+5Z)! 0=6z<1. (15)

1 (7(7 .
Ujmz—ffU(I,0,t)e’(2”’7)“0+mt)d0dt, (10 ' o
2JoJo Then the effective Hamiltonian becomes

HEH(1,0,8)=Hg(10) + Qo(I = lo) + Forg(1 —10)*+ Vp (19)cos((nok+ 1) 6 —nokt)

+Vn0+1(|0)005{((n0+ 1)k+1)6—(ng+1)kt], (16)
|
whereQo=dH(l,)/dl and o= d?H(lo)/dI?. . | (y+ (ng+N)kt)
In order to obtain the desired Hamiltonian, a canonical FOU,y,t)=— W+My+ vt, (17)

transformation is carried out. Using the following generating
function, the effective Hamiltonian is transformed from
(6,1,1t) to (y,J,t): where



2882
(n0+)\)k_(QO_Uolo)((no+)\)k+1)
m= 5 (18
(To((n0+)\)k+1)
and
1 2
V:_H0+Qolo_§(fo|0
L0 (ng+AN)k o1
T oolo= Qo kT ((ng+N)k+1)u
1 2,2
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, Uo((n0+)\)k+1)2
M= 72 Vigins (27)
, oo((Ng+N)k+1)2
P'=— . Vig+1-1 - (28
Y

A renormalization procedure is composed of the transforma-
tions illustrated in this section, i.e., it corresponds to a trans-
formation from Hamiltonian parametersk,M,P) to
(k',M',P").

Until now we have assumed tha§=1, which means that
the invariant torus to be renormalized exists in one part of a
possible region between resonanddsand P, i.e.,

where\ is introduced to make renormalization procedures<{,<1. The renormalization procedure for the other part

have fast convergend&], and

A=0 for 3<6z<1,

(20)
A=1 for 0<6z<3.

(20)<Q¢<€Q(1)) can be performed with the help of a
transformation from the original Hamiltonidiq. (1)], with
parametersi,M,P) to an identical Hamiltonian system with
parameters (k/P,M). Then the rangé) )<< in
the original Hamiltonian corresponds the range;,<(1,
<1 in the transformed Hamiltonian with parameters

This choice of\ guarantees thai,=1 at successive renor- (1k,P,M), so we can again apply, the above renormaliza-
malization procedures, which will be clear in Sec. Ill. From tion procedure to this Hamiltonian.
the above generating function, the relations between the old

and new coordinates are

gF |
_ - —u
ay  (ng+MNk+1

(21)

e IFM y+(ng+tN)kt 22
T al T (ngtNk+1”

and the new Hamiltonian is obtained as
(=6

J
HO =D 2T
eff 0—'t

1
= 500((no+ Mk+ 1)°3%+ V15 COSY

+Vp 15 COSK’ (Y= 1), (23)
where
No+1—N)k+1
' % (24)
(nptM)k+1
and
1-2M)k
( ) 25

Y g+ 1—Nk+1

At last, we have the final Hamiltonian witt = yt and
w=[oo((Ng+N)k+1)%/y]J,

W2
HR(w,y,t")= - M 'cosy—P’cosk’(y—t'), (26)

where

IIl. NUMERICAL RESULT OF RENORMALIZATION
TRANSFORMATION

As mentioned in Sec. Il, the invariant torus to be renor-
malized can be characterized byr ny and 6z. In order to
carry out successive renormalizaion procedures, the position
of transformed invariant torusz(=n}+ 6z') should be re-
quired. This position can be easily obtained when one sees
the problem in the limit thaM andP go to zero. From Eq.
(13), the position of invariant torus can be written as

gt 7= 0 29
2=Not 62= {7 (29
and, in the limit thatM andP go to zero,
k(1-vo)’ (30
since, in that limit,y=1=(. The position of transformed
invariant torus, therfore, is
, Wo
Z'=nj+6z' = : (31
k'(1—wp)

and, using Eq(21) and the relation betweem andJ in Sec.
Il, one can obtain

— % tor =0 32

LT AT (32)
and

T a1 33

zZ'= 5 or A=1. (33
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FIG. 1. V,, whenM=0.1, P=0.1, k=0.5, andl =0.2. FIG. 3. 62" vs 6z. The cross points wittdz' = 6z line are the
fixed points.

Note that the new position of the invariant torus depend
only on 6z, not onng. The relation betweern’ and 6z, and
the factng=1 (the integer part ok’ is ng), are shown in
Fig. 2. There is the infinite humber of fixed poina?si,”1 as

%WO fixed points, one of which correspondsie-0 and the
other tox=1 (Fig. 4). These fixed points are

1 1 4
shown in Fig. 3. Those fixed points are kﬁ:0=§+ >Vt (36)
n n 4
SN 0=— 4+ -\/1+ -, (34) o1 11 4
272 n kh~1=3 ”+1+2\/1+(n+1)2' (37)
-, —h-1 1 Once one takes an invariant torus, one can know whether
A=1_ + ,
0z, = 2 + 2 n“+2n+5, (35 the invariant torus is broken or not from the behavior of the

transformed coefficientdl andP under successive renormal-

wheren is a positive integer. This means that if one takes arization. When the values of the transformktiand P ap-
invariant torus corresponding = ny+ 52", then the next proach zero, the'lnvarlant torus is stable, i.e., not broken. On
Mo the other hand, if the values become larger and larger suc-

position of invariant torus ig’ =ng+ 5zﬁ, and this position cessively, the invariant torus is supposed to be broken.
is unchanged under subsquent renormoalization procedures. In practipal calculations, We use two kin(_:Js of cgefficients
As one can see from Eq24), under successive applica- of the retained resonances in EG3). One is obtained by

; . taking the action value of the renormalized torus, and the
tion of renormalization procedures the valuekaipproaches : . ’
P PP other by taking the action value of resonance ceriResults

10

3 T T

oz
FIG. 4. k' vs k whenn=1. The two cross points with thie’

FIG. 2.z’ as a function ofsz. =k line are the fixed points.
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FIG. 7. Svs k when X/Y=1. The solid line and dashed lines
FIG. 5. The instability transition lines wheo=1, 2, and 3. represent the present results for the cases of the use of the action
value of the renormalized torus and of the resonance center, respec-

for the latter case appear only in Figs. 6 andWe investi- tively. The dotted line and the data points are results of F3f.

gate the stability about invariant tod=ng+ 5zﬁ, and 1
0 versusX/Y whenk=1, andSversusk whenX/Y =1, respec-

<no,Np=10. This means that 400 invariant tori, being be-tively, whereS=X+Y. The solid and dashed lines represent
tween resonanced andP, are investigated. This number of o hresent results for the cases of the use of the action value
invariant tori is enough to see the transition to stochastiyf the renormalized torus and the retained resonance center,
instability from the isolated resonances divided by a Stabl(?espectively. The dotted line shows the results of the previ-
invariant torus. We can suppose that when the invariant torug,s renormalization method and the data points those of the
is broken, a transition to stochastic instability takes place. irect numerical integratiofs].

Results fork=1, 2, and 3 are shown in Fig. 5, whexe It is clear from the figures that the Kolmogorov transfor-
=2/M andY=2./P indicate the half width of the resonant mation improves the renormalization method when using the
domains. These results are very similar to those of the presction value of the renormalized torus. When using the ac-
vious the renormalization methda]. o tion value of the resonance center, the estimates of the tran-

To see the improvement of the renormalization method bition to stochastic instability do not improved at sméll
the Kolmogorov transformation, in Figs. 6 and 7 we pt gng k. These results are different from the known fact that

the use of the action value of the resonance center is crucial
T T T T T in the improved renormalization scheme by the Kolmogorov
transformation5]. We find that the behavior at smatl/'Y
andK is determined by invariant tori with smatl,, where
the distance between the retained resonances is relatively
long. This implies that the use of the action value of the
7 retained resonance center is not proper when the distance is
long.

1.2F

1 IV. APPLICATION TO THE DOUBLE WELL WITH AN
OSCILLATORY FORCE FIELD

Reichl and Zhen9,10] studied the motion of a particle
trapped in a quartic double-well potential in the presence of
a dynamic monochromatic external field. They showed that
the use of the renormalization method does not give a proper

0.6 L — result in this system under their pendulum approximation.
1 2 3 4 5 We note that their pendulum approximation is somewhat un-
X/Y physical in choosing the coefficients of perturbations corre-

sponding taM andP in Eqg. (1). In this section, we apply the

FIG. 6. Svs X/Y whenk=1. The solid line and dashed lines 'énormalization method to this system in a subtle way.
represent the present results for the cases of the use of the action The Hamiltonian for this system is

value of the renormalized torus and of the resonance center, respec-
tively. The dotted line and the data points are results of F3f. H=1p?—2x?+x*+ ex cog wt), (38

0.8
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and can be rewritten in terms of action-angle variapl§ = whereE is the complete elliptic integral of the second kind.

as Since we have interest in the onset of chaos in the region

betweenn=1 and 2 zones, it is possible to expand the

Hamiltonian about then=2 resonance; then we obtain a

H=E0(|)+En;w gn()cogno—wt), 39 Hamiltonian similar to Eq(43). Then, if we use the gener-
ating function

oo

where

Fa(l,x',)==3(1— 1) (X' + ot), (48)
T 2 In| 7K’ S
= a new Hamiltonian is found as
gn(l) 2K\/2—k2 sec)f K ) (40
, IF, p'? 1,
for a trapped particle{ 1<E,<0).K is the complete ellip- Ho=H+ —==Eo(l2)~ 2m0(| ) +ega(l)cosy (X' —wt)
tic integral of the first kindk is the modulus defined as
+ €g,(1)cosx’, (49
2V1+E
Ke=—""_"0 (41)  where
1+V1+Eg
. o o . PPEq(l5,)
andK' is the complete elliptic integral of the first kind with mo(l,)= — | (50)
a modulusk’ = \1—k?. The position of thenth resonance al

zone in action space is .
P If one takesx”=3(x'—wt) and p"=2p—3wmq(l,), it is

9E, V2 » evident that this Hamiltonian is identical k] except for the
= T Ao =0 (42)  value ofmg. So it is possible that the error inserted through
=1, N2~ kK =1, the expansion can be reduced by taking the average value of
| d dv th fch in th . b hmoz(m0(|1)+mo(|2))/2.
n order to study the onset of chaos in the region between the "1aking = po=2p'/w, ty=wt/2, xo=x', and H,

nth gnd _¢1+ 1)st zone, one can use the two resonance ap= 4/4,2 the HamiltonianH takes the so-called “stan-
proximation and expand about the resonance ggint

dard form”
9Eo(1n) 1 &Eqo(ln) 2 AEA(] 2
H=Bo(ln) + —5— (=l + 5 — 5= (1= 1) - Ho= 0(2 D PO x cosxy+ UY cos2(xo+ to)).
w 2m0
+eg,(l)cognd— wt) (51)
+egn.1(1)cod (n+1)0— wt]. (43)  The coefficients are defined as
In the pendulum approximation given by Reichl and Zheng, X_4€91(|)
the coefficients are taken ag,(1)=g,(l,) and g, (1) Uo= w2 (52
=0n+1(lh+1). However, these replacements have a weak
physical basis, sincg,(l) andg,. () are the functions of gnd
the same actionh.
Now we concentrate on the caserof 1. Using the gen- 4egy(l)
. . y_—
erating function U= > (53
w
Fi(l,x",t)=—(—=1)(X'+ wt), 44 -
il ) ( ) o) “4 These are related to our coefficiesand P by
a new Hamiltonian can be obtained as §
UO
NPT S P egyl)cosx’ M 54
1=H* 2 =Boll) =5 5y +€9all)cosx 0
+ €gy(1)cog2X' + ot), (45 and
Uy
where p=—". (55)
m
PEq(l1) ’
Mo(l4)= 912 (46) In order to apply the renormalization method, it is necessary
to set the values afj;(1) andg,(l). Since the invariant tori
and Z=np+ 5z§, are investigatedsee Sec. |, it is natural to
0

(47) for the renormalized torus. This means that we use different
values of the coefficients according to the position of invari-

92Eq(1) _772(2—k2){2 ~ ( 2— k2

) takeg,(l,) andg,(l,), wherel, is the corresponding action
a2 akK® 1—k2) ’
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: T T : : to stochastic instability in a Hamiltonidikg. (1]. As pointed

05r . out in Refs.[3,5], this improvement can be expected, since
- i the Kolmogorov transformation makes the perturbative terms
04F A smaller in the second order bf andP in the original Hamil-

tonian, so that the expansion of Hamiltonian abiguin Sec.
Il gives a more accurate expression than does the expansion
without the Kolmogorov transformation. However, in the
present renormalization scheme the use of the action value of
the resonance center for the coefficients gives a rather bad
estimate at smak andX/Y, which is contrary to the results
of Ref. [5]. The origin of this discrepancy is not clear. It
seems that the use of the action value of the retained reso-
nance center is not proper when the distance between the
resonance centers is long. However, we suppose that the use
of the action value of the resonance center does not give
o good estimates when the retained resonances locate with a
distance, i.e., wheng is small.

FIG. 8. The instability transition line on the-o plane. The Using this renormalization method, we also investigate
solid line represents the present theory. The dashed line shows thge escape of a particle trapped in a double well system due
result of the two pendulum approximation. The data points showg, 5 gynamic monochromatic external field. In this applica-
direct integratior{9). tion, varying coefficients of the pertubation according to the
invariant torus tested are used, which have a more solid

ant torus. The result.is showr) in Fig. 8. Our careful app”ca'physical basis than the previous two pendulum approxima-
tion of the renormalization gives a more accurate estimatgon of Reichl and Zheng.

than the two pendulum approximation.
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